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1 Determining the magnetic field

For calculating the Landé factor of the muon, we need the magnetic field applied to the
second scintillator. For this purpose we obtained the following table, associating the
(known) voltage U and the magnetic field B:

U in mV B in Gauß

10 1,36
20 4,41
30 7,45
40 10,5
50 13,55
60 16,59
70 19,64
80 22,46
90 25,74
100 28,78
110 31,83
120 34,88
130 37,92
140 40,97
150 44,02
160 47,07
170 50,11
180 53,16
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2 Time calibration of the detector

We plot these figures and use them for a linear regression:
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GnuPlot directly gives us the regression parameters for the equation

B = b ·U + B0 , (1)

yielding (knowing that 1 Gauß equals 0,1 mT)

b = (0,03048 ± 0,00003)mT/mV = 0,03048 mT/mV ± 0,08% (2)

B0 = (−0,1707 ± 0,0027)mT = −0,1707 mT ± 1,6% . (3)

Thus, with a voltage of U = 123,67 mV we can now calculate our magnetic field:

B = 3,5988 mT (4)

Gaussian error propagation gives us

σB =
√

U2 ·σ2
b + σ2

B0
, (5)

finally yielding
B = 3,5988 ± 0,0046 mT = 3,5988 mT ± 0,13% . (6)

2 Time calibration of the detector

To be able to calculate the muon lifetime later, we first need to do a time calibration of
our detector channels. Therefore, we manually set time delays from zero to 15 ms on a
defined signal, obtaining the following values:
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3 Lifetime of the muon
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Figure 1: Time calibration of the detector

Again, GnuPlot supplies us with the regression parameters for the equation

t(K) = a ·K + t0 , (7)

with the channel number K:

a = 0,0297 ± 2,07 · 10−5
µs = 0,0297 µs ± 0,07% (8)

t0 = 0,352 ± 0,006 µs = 0,352 µs ± 1,74% (9)

3 Lifetime of the muon

The experiment was running since the beginning of the semester, which is about two
months. The following plot shows the time between the detection of a muon in the
detector and the detection of its decay products on the X axis, and the number of the
events on the Y axis. We cut off the first 15 channels (very fast decays), as different
effects showed up there (such as a peak at channel 5) which are not related to the lifetime
of the muon.

We performed a non-linear fit of the form

N (K) = Ae−
K

κ + c (10)

with the fit parameters A, κ and c since this describes the decay law with a constant
underground c assumed.
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3 Lifetime of the muon
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Figure 2: Muon lifetime

The resultant parameter values are

A = 779,651 ± 5,236 (11)

κ = 62,0198 ± 0,5541 (12)

c = 40,0581 ± 0,7823 (13)

To gain the muon lifetime from κ, we need to apply the time calbration we did before.
For this purpose, we compare our fitted curve with the decay law e−

t

τ :

Ae−
K

κ
!
= A0e

−

t(K)
τ = A0e

−

aK+t0
τ = A1e

−

aK

τ (14)

We can thus identify

A = A1 = A0e
−

t0
τ (15)

K

κ
=

aK

τ
⇒ τ = aκ (16)

Furthermore, we treat any errors in calibration as systematic ones here, because they
would not change if we did multiple measurements. The error of κ (resulting from the
fit) becomes the statistical error of the lifetime. We find
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4 Landé factor of the muon

τ = t (κ) = aκ = 0,0297 µs ·κ = 1,842 µs (17)

στ,stat =

∣

∣

∣

∣

∂t

∂K
∆κ

∣

∣

∣

∣

= |a∆κ| = 0,0297 µs ·∆κ = 0,017 µs (18)

στ,sys =

∣

∣

∣

∣

∂t

∂a
∆a

∣

∣

∣

∣

= |κ∆a| =
∣

∣κ · 2,07 · 10−5
µs

∣

∣ = 0,002µs (19)

We can thus give the resultant muon lifetime as

τ = (1,842 ± 0,017 ± 0,002) µs (20)

Comparing to the literature value of 2,197 µs we find that our value is somewhat too
small. We guess this comes from the same effect because of which we cut off the first
15 channels. If we would cut off even more channels, such as the first 100 ones, then
we would find τ = 2,08 µs and a higher error, which comes close to the literature value.
However, as we don’t know what causes this effect we can’t handle it properly, and we
don’t have a good estimation at which channel to do the cut-off.

4 Landé factor of the muon

To find the Landé factor of the muon, we need to find the oscillations due to the magnetic
field in the data points. First, we extracted the pure lifetime part of the data by sub-
tracting the underground factor c and dividing by the exponential function determined
in the section above. The remainder now should simply show sine-like oscillations.

Therefore, we fitted a curve of the form

f (K) = B · sin (wK + δ) + d (21)

to the data set. Depending on the chosen starting values for the fit parameters B, w,
δ and d, we got quite different results, especially for w from which we will find ω later.
There were only a few w values to which the fit converged, depending on the starting
parameter values. We chose the starting values so that the resulting w matched the data
set best when merely looking at the resultant curve.

Another thing to note is that due to low counts in higher channels (especially when
subtracting the underground) the fluctuations in those are so high that the values are
rather meaningless. We therefore cut off all counts above channel number 256 for the
fit.
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4 Landé factor of the muon
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Figure 3: Oscillations due to the magnetic field

Even though the fluctuations are still incrementing with higher channels, we can see
that the fitted curve matches the data set in the sense that at the curve’s maxima the
data set values are greater than in the immediate surroundings, and vice versa for the
minima. The fit gives us

w = 0,106081 ± 0,005871 (22)

Again, comparison with the expected curve gives us the relation between w and ω:

sin (wK + δ)
!
= sin (ωt (K) + δ0) = sin (ω (aK + t0) + δ0) = sin (ωaK + δ1) (23)

By identification of the constant and K-depending terms, respectively, we find:

δ = δ1 = δ0 + ωt0 (24)

wK = ωaK ⇒ ω =
w

a
(25)

Knowing ω, we can determine the Landé factor g, which is given by (according to our
preparation):
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4 Landé factor of the muon

g =
h̄ω

µBB
=

2mµh̄w

aeh̄B
= 2,337 (26)

σg,stat =

∣

∣

∣

∣

∂g

∂w
∆w

∣

∣

∣

∣

=
2mµ∆w

aeB
= 0,130 (27)

σg,sys =

√

(

∂g

∂a
∆a

)2

+

(

∂g

∂dB
∆B

)2

(28)

=

√

(

2mµw

a2eB
∆a

)2

+

(

2mµw

aeB2
∆B

)2

= 0,004 (29)

Our final result for the Landé factor is therefore

g = 2,337 ± 0,130 ± 0,004 (30)

Again, the literature value of 2,002 is slightly different. We assume this is because
of the same reason as the value for τ is different from the literature value since τ has
been used to normalize the data set before applying the sine function to it. However,
we cannot cut off the lower channels to try to get better results, since then we would
only have the higher channels left. Those however have so much fluctuations in the
normalized counts that it would be even more difficult to fit a sane sine curve to them.
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